| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
- matrix fo a linear transformation
- one-to-one
- Big-Oh notation
- 코틀린 시작하기
- nonhomogeneous linear system
- 빅오 표기법
- python
- homogeneous linear system
- Big-Oh 예제
- itertools
- NumPy
- recursive algorithms
- 재귀함수
- 랜덤 순서 배열
- 코틀린 Hello World!
- 빅오메가
- matrix trnasformations
- 이진 탐색
- Big Theta
- nontrivial solution
- includepdf
- linear dependence
- Big Omega
- 페이지 겹칩
- 빅세타
- trivial solution
- 일차변환
- 알고리즘 분석의 실례
- Big-O 예제
- 배열 섞기
- Today
- Total
코딩 연습
A number consisting entirely of ones is called a repunit. We shall define \(R(k)\) to be a repunit of length \(k\); for example, \(R(6)=111111\). Let us consider repunits of the form \(R \left (10^n \right )\). Although \(R(10),\; R(100)\), or \(R(1000)\) are not divisible by \(17\), \(R(10000)\) is divisible by \(17\). Yet there is no value of \(n\) for which \(R \left ( 10^n \right )\) will di..
A number consisting entirely of ones is called a repunit. We shall define \(R(k)\) to be a repunit of length \(k\). For example \(R(10)=1111111111=11\times 41 \times 271 \times 9091\), and the sum of these prime factors is \(9414\). Find the sum of the first fort prime factors of \(R \left ( 10^9 \right ) \). 숫자 \(1\) 로만 이루어진 수를 repunit 이라고 한다. \(R(k)\) 를 \(k\) 개의 \(1\) 로 이루어진 수라고 하자. 예를 들어, \(R..
There are some prime values, \(p\), for which there exists a positive integer, \(n\), such that the expression \(n^3 + n^2 p\) is a perfect cube. For example, when \(p=19, \; 8^3 + 8^2 \times 19 = 12^3\). What is perhaps most surprising is that for each prime with this property the value of \(n\) is unique, and there are only four such primes below one-hundred. How many primes below one million ..