| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
- homogeneous linear system
- 코틀린 시작하기
- Big-Oh 예제
- Big Theta
- matrix trnasformations
- 알고리즘 분석의 실례
- itertools
- 빅오 표기법
- 일차변환
- matrix fo a linear transformation
- 빅세타
- python
- one-to-one
- recursive algorithms
- NumPy
- 랜덤 순서 배열
- 코틀린 Hello World!
- nonhomogeneous linear system
- includepdf
- 페이지 겹칩
- linear dependence
- trivial solution
- 재귀함수
- nontrivial solution
- 빅오메가
- Big-Oh notation
- 이진 탐색
- 배열 섞기
- Big-O 예제
- Big Omega
- Today
- Total
코딩 연습
In the following equation \(x, \; y,\) and \(n\) are positive integers. \[\dfrac{1}{x} + \dfrac{1}{y} = \dfrac{1}{n}\] For \(n=4\) there are exactly three distinct solutions: \[\begin{split} \dfrac{1}{5} + \dfrac{1}{20} &= \dfrac{1}{4} \\ \dfrac{1}{6} + \dfrac{1}{12} &= \dfrac{1}{4} \\ \dfrac{1}{8} + \dfrac{1}{8} &= \dfrac{1}{4} \end{split}\] What is the least value of \(n\) for which the bumber..
The following undirected network consists of seven vertices and twelve edges with a total weight of \(243\). The same network can be represented by the matrix below. A B C D E F G A - 16 12 21 - - - B 16 - - 17 20 - - C 12 - - 28 - 31 - D 21 17 28 - 18 19 23 E - 20 - 18 - - 11 F - - 31 19 - - 27 G - - - 23 11 27 - However, it is possible to optimize the network by removing some edges and still e..
The Fibonacci sequence is defined by the recurrence relation: \({\rm F}_n = {\rm F}_{n-1} + {\rm F}_{n-2}, \) where \({\rm F}_1 =1 \) and \({\rm F}_2 = 1\) It turns out that \(\rm F_{541}\), which contains \(113\) digits, is the first Fibonacci number for which the last nine digits are \(1-9\) pandigital (contain all the digits \(1\) to \(9\), but bot necessarily in order). And \(\rm F_{2749}\),..