일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- 배열 섞기
- homogeneous linear system
- 빅오 표기법
- 랜덤 순서 배열
- matrix fo a linear transformation
- 코틀린 시작하기
- matrix trnasformations
- 페이지 겹칩
- trivial solution
- 빅오메가
- includepdf
- 재귀함수
- 일차변환
- python
- recursive algorithms
- one-to-one
- Big-O 예제
- Big Omega
- 코틀린 Hello World!
- itertools
- 빅세타
- Big-Oh 예제
- Big Theta
- 알고리즘 분석의 실례
- nonhomogeneous linear system
- 이진 탐색
- NumPy
- Big-Oh notation
- nontrivial solution
- linear dependence
- Today
- Total
코딩 연습
69번 문제는 다음과 같다. Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of numbers less than n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relatively prime to nine, φ(9)=6. n Relatively Prime φ(n) n/φ(n) 2 1 1 2 3 1,2 2 1.5 4 1,3 2 2 5 1,2,3,4 4 1.25 6 1,5 2 3 7 1,2,3,4,5,6 6 1.1666... 8 1,3,5,7 4 2..
68번 문제는 다음과 같다. Consider the following "magic" 3-gon ring, filled with the numbers 1 to 6, and each line adding to nine. Working clockwise, and starting from the group of three with the numerically lowest external node (4,3,2 in this example), each solution can be described uniquely. For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3. It is possible to complete the ..
67번 문제는 다음과 같다. By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows. NOTE: It is not possible to try ..