| 일 | 월 | 화 | 수 | 목 | 금 | 토 |
|---|---|---|---|---|---|---|
| 1 | ||||||
| 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 16 | 17 | 18 | 19 | 20 | 21 | 22 |
| 23 | 24 | 25 | 26 | 27 | 28 | 29 |
| 30 |
- 배열 섞기
- trivial solution
- itertools
- Big-Oh notation
- linear dependence
- python
- nontrivial solution
- 코틀린 시작하기
- matrix fo a linear transformation
- 페이지 겹칩
- 랜덤 순서 배열
- 일차변환
- 빅오 표기법
- includepdf
- 이진 탐색
- homogeneous linear system
- 빅오메가
- matrix trnasformations
- Big Theta
- nonhomogeneous linear system
- 빅세타
- one-to-one
- Big Omega
- 알고리즘 분석의 실례
- 코틀린 Hello World!
- Big-Oh 예제
- 재귀함수
- recursive algorithms
- Big-O 예제
- NumPy
- Today
- Total
코딩 연습
68번 문제는 다음과 같다. Consider the following "magic" 3-gon ring, filled with the numbers 1 to 6, and each line adding to nine. Working clockwise, and starting from the group of three with the numerically lowest external node (4,3,2 in this example), each solution can be described uniquely. For example, the above solution can be described by the set: 4,3,2; 6,2,1; 5,1,3. It is possible to complete the ..
67번 문제는 다음과 같다. By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23. 3 7 4 2 4 6 8 5 9 3 That is, 3 + 7 + 4 + 9 = 23. Find the maximum total from top to bottom in triangle.txt (right click and 'Save Link/Target As...'), a 15K text file containing a triangle with one-hundred rows. NOTE: It is not possible to try ..
66번 문제는 다음과 같다. Consider quadratic Diophantine equations of the form: x2 – Dy2 = 1 For example, when D=13, the minimal solution in x is 6492 – 13×1802 = 1. It can be assumed that there are no solutions in positive integers when D is square. By finding minimal solutions in x for D = {2, 3, 5, 6, 7}, we obtain the following: 32 – 2×22 = 1 22 – 3×12 = 1 92 – 5×42 = 1 52 – 6×22 = 1 82 – 7×32 = 1 Hen..